Chem 108: Lab Week 11

Sign in To do with Fermentation partner: Alcohol Distillation Turn in 7-Solution Report form and Post Lab Questions

QUESTION

An unknown substance dissolves readily in water but not in benzene (a nonpolar solvent). Molecules of what type are present in the substance?

- a) neither polar nor nonpolar
- b) polar
- c) either polar or nonpolar
- d) nonpolar
- e) none of these

ANSWER

An unknown substance dissolves readily in water but not in benzene (a nonpolar solvent). Molecules of what type are present in the substance?

- a) neither polar nor nonpolar
- b) polar
- c) either polar or nonpolar
- d) nonpolar
- e) none of these

20.0-g of HF [MM = 20.0 g/mol] was dissolved in water to give 2.0 x 10² mL of HF(aq), a weak acid solution. The concentration of the solution is:

a)	1.0	IVI	
	~ ~		

b) 3.0 Mc) 0.10 M

d) 5.0 M

I) 5.0 WI

20.0g x mol / 20.0g x 1/ 200mL x 1000mL/ L

e) 10.0 M

		PERCENT	TETHANOL FO	R VARIOUS	DENSITIES		0 . /
	% ethanol by	Density	% ethanol by	Density	% ethanol by	Density	Example
	mass	(g/mL)	mass	(gimL)	mass	(g/m L)	/
	0.0	0.998	35.0	0.945	0.00	0.870	
	1.0	0.996	38.0	0.943	70.0	0.868	
	2.0	0.995	37.0	0.941	71.0	0.965	
	3.0	0.993	38.0	0.939	72.0	0.863	91 55 0
4 = 01	4.0	0.991	39.0	0.937	73.0	0.950	27.00.9
4.5%	5.0	0.989	40.0	0.935	74.0	0.858	0
	6.0	0.988	41.0	0.933	75.0	0.856	to a C
1	7.0	0.998	42.0	0.931	76.0	0.853	32.2 mL
0.000 alm P	8.0	0.985	43.0	0.929	77.0	0.851	
COC g may	9.0	0.983	44.0	0.927	78.0	0.848	
	10.0	0.982	45.0	0.925	79.0	0.846	
	11.0	0.980	48.0	0.923	0.08	0.843	
	12.0	0.979	47.0	0.920	81.0	0.941	
	13.0	0.978	48.0	0.918	82.0	0.838	
	14.0	0.978	49.0	0.916	83.0	0.836	
	15.0	0.975	50.0	0.914	84.0	0.833	
	16.0	0.974	51.0	0.912	85.0	0.831	
	17.0	0.973	52.0	0.909	86.0	0.828	
	18.0	0.971	53.0	0.907	87.0	0.826	
	19.0	0.970	54.0	0.905	88.0	0.823	
	20.0	0.969	55.0	0.903	89.0	0.821	
	21.0	0.987	58.0	0.900	90.0	0.818	
	22.0	0.986	57.0	0.898	91.0	0.815	
	23.0	0.965	58.0	0.896	92.0	0.813	
	24.0	0.963	59.0	0.893	93.0	0.810	
	25.0	0.962	60.0	0.891	94.0	0.807	
	26.0	0.960	61.0	0.889	95.0	0.804	
	27.0	0.959	62.0	0.887	96.0	0.801	
	28.0	0.957	63.0	0.884	97.0	0.798	
	29.0	0.955	64.0	0.882	98.0	0.795	
	30.0	0.954	65.0	0.879	99.0	0.792	
	31.0	0.952	65.0	0.877	100.0	0.789	
	32.0	0.950	67.0	0.875			
	33.0	0.949	68.0	0.872			

Theoretical Yield Calculation $\mathcal{24.55g}$ \mathcal{Cg} (theoretical) $C_{12}H_{22}O_{11}$ H_2O \rightarrow $\boldsymbol{4}$ C_2H_5OH 4 CO_2						
sucrose ethanol						
Molar mass = 342.3 g/mol Molar mass = 46.07 g/mol						
? mol <i>sucrose</i> = 24.55 g / 342.3 g/mol ? mol <i>C</i> ₂ <i>H</i> ₃ <i>OH</i> = 4 x mol <i>sucrose</i> = 0.07172 mol = 0.2869 mol						
$\mathcal{C}_{\mathcal{J}}$ (theoretical) = mol $C_2H_3OH \times 46.07$ g/mol = 13.22 g						
? g (actual) = [4.5 %, that is: 4.5/100] x $32.2 m Lx 0.990.g lm L$ = 2.33g						
% Yield = g (actual) / g (theoretical) x 100 = 17.6 %						

